The Gas, Mass, & Springs Tuning Method for the AR Platform

Achieving optimal performance characteristics with the AR platform Modern Sporting Rifle is based upon understanding the fundamental operating principles of the weapons system. The three core components to the operations trifecta are, Gas, Mass, and Springs. Or more appropriately, springs, gas and mass, in that order. Achieving operational perfection is dependent on achieving the proper balance between the three and tuning the system in the proper sequence, the “operating trifecta.” All gas operated semi or full automatic firearms, regardless of their particular system of operation, rely principally on springs and gas to function. The amount of reciprocating mass, typically bolt and bolt carrier and in the case of the AR platform, the buffer, when combined with the springs and gas effects the cyclic rate and related function of the weapon.

Springs, specifically the action spring, AKA Buffer Spring is the heart of the AR’s operating system. The action spring determines, to a large degree, how long the bolt carrier group “BCG” stays locked up in battery, controls the speed of the BCG and buffer, known as the reciprocating mass, slows the mass, and crates the force which returns the BCG into battery. Other springs which play a roll in the cycling related function are the magazine spring’s ability to bring the rounds into the proper position for reliable feeding and the hammer return spring, which creates some small amount of resistance in the rearward portion of the BCG’s cycle. Selecting the proper action spring is the first and single most critical step in the weapons tuning trifecta.

In the AR platform, the gas that drives the system has several components which affect operation. First is the port pressure, which is determined by the location of the gas port on the barrel and which, also determines the length of time the gas has to travel to effect operation of the bolt. Next, the size of the gas port, which determines gas volume introduced into the system. And lastly, the barrel length past the gas port, which determines the dwell time, or time that the system is pressurized. The pressure factor of the ammunition being fired is the last variable related to gas. However, it should be noted, that when using suppressors which have backpressure created by the baffle-chamber design most common in the industry, this effectively lengthens the barrel, often dramatically increasing the dwell time and creating additional prolonged pressure on the breach-face of the bolt. These characteristics create an “over gassing” and increased cyclic rate, recoil and blowback into the action. Unless you’re using a true zero backpressure suppressor such as the new MAXFLO 3D suppressor design from NexGen² Defense, an adjustable gas device is in order if you wish to run the same buffer weight and spring in both suppressed and non-suppressed mode.

Mass, in this case specifically, the reciprocating mass in an AR platform weapon, which is composed of the BCG and Buffer, affects the tuning in two key ways. The more weight you have, the longer it takes to begin moving. This helps to keep the BGC in battery in over-gassed and under-sprung systems, and systems prone to early unlocking and prolonged dwell, such as guns with carbine length gas systems and 14 to 16 inch barrels and almost any length system running suppressors with traditional backpressure generating designs. Second, once that mass starts moving, it will move slower the heavier it is, thus slowing the cyclic rate. Sounds good, doesn’t it. Keep the BCG locked up longer and slow the cyclic rate, what’s bad about that? Well, several things, once that heavier mass bottoms out against the bottom of the buffer tube, it remains there longer, since it takes the action spring longer to get that mass moving forward, so you get more felt recoil for a longer duration, which tends to move the weapon more, which makes it more difficult to keep repeat shots on target. Next, more weight can keep the BCG locked up
too long, allowing pressure in the system to drop below what’s needed to properly cycle the action with the result being short stroking and the system being less compatible with lighter loads.

The evolution of the AR platform has blossomed exponentially in the last 26 years, or so. Much of this is due in no small part to the millions of Americans serving in the military since the first Gulf War in August 1990 through September 11 2001 and continuing to the present day with the Global War on Terror. This, combined with the lessons learned in combat drove the need to further develop and improve the AR platform weapons system to meet these evolving requirements.

This has driven the consumer market, and as that market has expanded, the use of the AR platform in competition, hunting, recreation, defense and law enforcement, etc. has presented a bewildering myriad of configurations, calibers, ammunition choices and accessories. All of this has led to a near epidemic level of functional challenges and tuning issues with the platform.

Whether you already have a safe full of guns or are embarking upon a new build, a properly timed and tuned AR platform carbine or rifle will greatly enhance the reliability, shootability and the overall experience with the weapon.

Now that we’ve covered all the basics, the question you most likely have is “what constitutes a properly tuned AR?” and, “how do I get my rifle or carbine tuned to that level?” In short, a properly tuned AR is one that ejects the spent cases at a 4:00 o’clock horizontal ejection trajectory, as referenced from 12:00 o’clock being the bore axis, and locks back on last round on an empty magazine.

We call the 4:00 o’clock case trajectory, the brass’ “Happy Place”, with a tight ejection pattern at 4 o’clock being the ultimate indication of both optimal and consistent BCG velocity. Benefits of achieving this highest state of tune, in addition to having your brass in a nice little pile, is greatly enhanced reliability, less felt recoil, gun runs considerably cleaner, reducing maintenance, faster follow up shots and often increased accuracy from more consistent feeding and return to battery.

The other ejection areas are 3 o’clock, which is indicative of a slightly over-gassed or under sprung system, or system with too little carrier of buffer mass for the system as configured. Ejection patterns forward of 3 o’clock, 2:30, 2, 1:30 and 1 o’clock are caused by increasing levels of excess gas and/or inadequate action spring and occur when the over accelerated BCG violently ejects the case, which strikes the shell deflector, causing the case to bounce forward. Erratic ejection patterns during rapid fire, or full auto fire are caused by carrier bounce most often in combination with poor timing, but even precisely tuned AR’s exhibit carrier bounce in rapid fire. This is caused when the standard profile urethane bumper can’t absorb the amount of energy in the time duration required.

Unfortunately, with the extremely wide variety of AR platform rifles it’s akin to Forrest Gump’s proverbial box of chocolates, “You never know what you’re gonna get.” The state of “over-gassing” by AR platform weapons and component manufacturers and builders was exacerbated by the great ammo crunch of 2013. This shortage forced many shooters to grab whatever ammunition they could find, and much of the offerings were and remain very low power factor loads. Manufacturers who were gassing their carbines with the proper port size for the higher pressure mil-spec M855 ammunition, were besieged by customer complaints that their guns would not run with the lower powered consumer SAAMI spec ammunition. And, the easiest fix was to enlarge the port sizes to decrease the amount of customer service issues. While the larger port sizes would cycle this lower pressure ammunition, the
shooter firing NATO or mil-spec or higher power factor loads was faced with a greater incidence of over
gassed AR’s, making the vast majority of current production carbines and component builds a forensic
exercise to properly tune their guns. Over gassed guns are also going to unlock too early, causing the
gun to run dirtier and create premature component wear.

The starting point is for the shooter to identify and document the baseline ejection trajectory with the
freshest mil-spec spring they can find and their current buffer, along with the range of ammo that they
plan to be firing. It’s best to take a buddy to an outdoor range and have them directly face the ejection
port at 3:00 o’clock from a distance of ~10’ and make that determination while the shooter gets into
their gun correctly. In the absence of an assistant, take a video from the same vantage point with their
phone camera or GoPro. When feasible, the most accurate assessment is a video taken from directly
above the shooter looking straight down.

It’s also best when possible to borrow as wide a range of heavier buffer weights as possible from a
fellow shooter and document how the ejection angle changes with the increases with the reciprocating
mass. If you have a gun that’s ejecting in the 12:30 to 1:30 range, it’s probably going to be a candidate
for and adjustable gas block, as you’re never going to attain a 4:00 o’clock trajectory with just increasing
the mass and spring weight. In the absence of access to range of heavier buffers, and rather than going
out and purchasing each buffer weight, Sprinco USA’s new “4:00 O’clock Configurable Buffer Kit” will
allow the shooter to both replicate known commercially available buffer weights and even fine tune to a
custom weight that’s in between commercial offerings. A half to three quarters of an ounce can make a
big difference in dialing it in perfectly vs. the 1.5 oz. jumps with traditional tungsten weights used in
commercially available buffers. If the shooter wants to be able to run everything from the cheapest low
powered steel case ammo through full power NATO spec loads, they have to decide whether to tune it
to 4:00 o’clock with the lowest power factor loads and accept the fact that they’re going to be over
gassed with the heavier loads, or determine the best recipe of buffer weight and spring for both ends of
the spectrum. The same dilemma exists with the vast majority of suppressors. Typically if the gun is
tuned to 4:00 o’clock unsuppressed, the back pressure induced by the can will move it up to the 2:00
o’clock range and it’s going to run dirtier.

If it’s a brand new gun, also it’s best to break it in to properly seat the rings prior to conducting the
tuning exercise, and if the rings have a lot of mileage on them, go ahead and replace those, seat them
properly firing at least 25 - 50 rounds prior to conducting the documentation exercise on a properly
cleaned and lubricated weapon.

On the other end of the spectrum are guns that are under gassed due to smaller than optimal port sizes,
subsonic loads, lightweight frangible rounds, and long barrels with rifle length gas firing light weight
projectiles. Sprinco USA currently offers six different carbine springs from Reduced Power to Extra Extra
Heavy to address the Spring leg of the “operating trifecta”. Each spring has been designed to address
specific load demands, not clones of other commercially available springs. Utilizing Certified Valve
Quality ASTM A877 Chrome Silicon along with Dual-Stage Shot Peening, these springs are designed to
maintain consistent, reliable operation for several million cycles.

©2015 Tactical Springs LLC